
Iron Bank Flow Diagram
Iron Bank Steps

1.) Hardening/Dependency Download
1a.) Contributor updates application
1b.) Contributor submits a feature branch to Gitlab. The branch will include the
Download.json, Dockerfile, ReadMe, and a license. Once the branch is ready, the
Contributor will submit a pull request to the Development Branch.
1c.) Iron Bank Container Hardeners will review the pull request with eyes on code.
Once the hardeners validate that the pull request meets criteria specified, they will
approve the pull request and merge the feature branch into the development branch.
1d.) The action of merging into the development branch will inform a Jenkins server
to start orchestrating the pipeline.
1e.) The first Jenkins Runner will have egress to the Internet. It will look at the
Download.json file to identify the components necessary to pull
the contributors information into the environment securely. Once in the environment
signatures and checksums will be validated to ensure providence.
1f.) Each item downloaded will be sent through a Clam AV scan. If there are threats
identified, the download will be quarantined.
1g.) If there are no threats detected, dependencies are pushed into a private Nexus
server.

2.) Build Container
2a.) After dependencies have been validated, the Jenkins server will start another
Jenkins Runner without any egress to perform the build operations.
2b.) The runner will connect to the Nexus server and pull down the scanned
dependencies.
2c.) The runner will build the contributor's container without Internet access.
2d.) After a successful build the container is pushed into the Nexus server

3.) Evaluate Container
3a.) After a successful build, the runner will execute an OpenSCAP, Twistlock, and
Anchore scans.
3b.) Results of the scans will be uploaded to the Whitelist Generator
3c.) Contributor will connect to the Whitelist Generator and justify any findings from
the scans.
3d.) Iron Bank CVE Approvers will review all the justifications submitted and validate
the information as accurate and appropriate to satisfy the finding.

4.) Approve Container
4a.) With the findings of the scans validated, the Authorizing Official (AO) or the AO
Designated Representative (DR) will review the entire body of evidence and make
the decision to approve the container.

5.) Publish Container
5a.) Once approved, the Whitelist Generator will merge the Development Branch
into the Master Branch.
5b.) This will trigger the Jenkin server to start a publish pipeline. Another Jenkins
Runner without egress will be started to perform the actions.
5c.) The runner will pull the container in, sign the container, generate a checksum,
and pull the body of evidence.
5d.) The package will be pushed to multiple locations segregating the check sum
and public key from the container and body of evidence.

6.) Deliver Container
6a.) The Iron Bank web application will retrieve container information from the
storage location utilized by the Whitelist Generator.
6b.) Users will be able to access the Iron Bank web application and obtain the body
of evidence and containers.
6c.) Platform One environments will have a container that will connect to the Iron
Bank authenticating with a machine to machine certificate
and synchronize containers.



P1 - Iron BankPush Feature Branch and
Submit PR to 

Development Branch:
Download.json

Dockerfile
ReadMe
license

HTTPS
443

MFA: OTP/DoD PKI

Justify
Findings

vendor server Gitlab

HTTPS
443

Random
High Port

Jenkins

Twistlock

Anchore

Review (eyes on code) 
and Approve 

Development Branch PR

HTTPS
443

MFA: CAC

Verify
CVEs

Nexus

HTTPS
443

Merge Development 
Branch with Master

Whitelist
Generator

HTTPS
443

S3 Bucket

Iron Bank

HTTPS
443

MFA: CAC

Approve
Container

HTTPS
443

MFA: OTP/DoD PKI

Contributor

Iron Bank 
Container Hardener

AO/AO DR

Iron Bank 
CVE Approver

General User

HTTPS
443

Machine to 
Machine Certificate

GPG Signature verified
Checksum validated

Iron Bank deltas sync'd

Non-Person Entity

Retrieve
Dependencies

Jenkins Runner No
Egress

Build
Container

Random 
High Port

Jenkins Runner with
Egress

Clam AV
Download Dependencies 
Based on Download.json

Verify Signatures
Verify Checksum

HTTPS
443

Push Scanned
Dependencies

Random 
High Port

HTTPS
443

Pull Scanned
Dependencies

Push Container

HTTPS
443

OpenSCAP

HTTPS
443

Pull Container

HTTPS
443

Jenkins Runner No
Egress

GPG Sign Generate
Checksum

Pull
Reports

Export Container, 
Checksum, 

Public Key, and 
Body of Evidence

HTTPS
443

Pull
Container

Legend

Hardening/
Dependency

Download

Build
Container

Evaluate
Container

Approve
Container

Publish
Container

Deliver
Container

Egress

No
Egress

1

2

3

4

5

6

1a

1b

1c

1d

1e
1f

1g

2a

2b 2c

3a 3b

3c

3d

4a
5a

5b

5c
5d

6b

6a

6c

2d


